If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+32x-92=0
a = 7; b = 32; c = -92;
Δ = b2-4ac
Δ = 322-4·7·(-92)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-60}{2*7}=\frac{-92}{14} =-6+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+60}{2*7}=\frac{28}{14} =2 $
| 4+x=2x=164 | | -1=(3y+2)/3-(7y+7)/6 | | 4x;=7x | | -4x+7=-3x-4 | | 7.7x-4=6.7× | | 60-40x=300 | | 9=3x+34 | | 10x^2+8x-245=0 | | 0.5x+0.25×2x=9 | | 3.7x+1=2.7× | | F(0)=-x-8 | | 0.08x+0.06(168−x)=32 | | 2x2+20x-224=0 | | 3/2x+19/9=7 | | 5/6+9y=22 | | 263=23-u | | 130+67=3x | | x²+10x=30 | | (1.005)12x=3 | | Y=-1/19x+2 | | 2✖️(70-x)+3x=180 | | e^-1=6 | | .125x+3=`0 | | .125x-3=10 | | -0/4a+3=7 | | -8y-5=3y^2 | | 5.2z-2.19=20.118 | | (3x+6)+(2x+2)=5(x-1)+11 | | (5x-6)/2+(x+1)/5=8 | | y/5+1/4=5y | | 3c^2+2c-2=0 | | 8x-4(x-1)=-2+6x+8 |